Forest Archives - Environmental Action Group https://environmentalactiongroup.org/category/forest/ Environmental Action Group Tue, 17 Oct 2023 15:34:11 +0000 en-US hourly 1 https://wordpress.org/?v=6.5.5 230731689 Suburban Environmentalist -What to do with Leaves https://environmentalactiongroup.org/2023/10/17/suburban-environmentalist-what-to-do-with-leaves/ Tue, 17 Oct 2023 15:32:42 +0000 https://environmentalactiongroup.org/?p=22876 The post Suburban Environmentalist -What to do with Leaves appeared first on Environmental Action Group.

]]>

The Leaf - From Emergence to Compost, an Impressive Design

The multifaceted nature of tree leaves is both a testament to great design and a reflection of their integral role in sustaining life on Earth. At their core, leaves are the tree’s primary energy converters. Armed with chlorophyll, these remarkable organs capture sunlight and metamorphose it into chemical energy through photosynthesis.

Photosynthesis is not only pivotal for the tree’s own sustenance but also for the broader ecosystem. As leaves absorb carbon dioxide and release oxygen, they play a linchpin role in maintaining the delicate atmospheric balance that life relies on. Additionally, their contribution to the water cycle through transpiration and cloud seeding cannot be understated, as it aids in temperature regulation and impacts local climates.

Yet, the marvel of leaves doesn’t stop at their biochemical processes. Observing the diverse landscapes of our planet, one can witness the leaves’ extraordinary adaptability. Their varied shapes, sizes, colors, and textures are designed to ensure the tree’s survival in a multitude of habitats. Whether it’s the narrow needle-like leaves conserving water in arid regions or the vibrant hues of deciduous leaves in temperate zones, each variation serves a purpose.

Equally intriguing are the leaves’ self-regulatory mechanisms for survival. Stomata, for instance, are not just mere pores on a leaf’s surface. They are gatekeepers, regulating the intake of carbon dioxide and ensuring minimal water loss in the process. And, in a world filled with potential herbivores, many leaves have devised their own defensive arsenal, be it through thorns, spines, or even toxins.

Yet, for all their biological wonder, leaves have intertwined themselves with human culture in profound ways. Their economic and cultural imprint ranges from their culinary and medicinal properties to their symbolic and artistic significance. In essence, while tree leaves serve as vital cogs in the natural world, they also enrich our human experiences in countless ways.

From Photosynthetic Vitality to Autumnal Descent: The Life of a Leaf

The life journey of a leaf is a captivating tale of growth, productivity, and eventual surrender to the rhythms of nature.

As seasons progress and daylight diminishes, the days of a leaf’s photosynthetic productivity gradually wane. By the time autumn approaches, a series of physiological and biochemical changes commence within the leaf. Chlorophyll, the pigment responsible for the leaf’s green hue, starts to break down and degrade

This degradation unmasks other pigments that were always present but overshadowed by the dominant green. Carotenoids, responsible for yellow and orange hues, and anthocyanins, which produce red and purple shades, begin to reveal themselves. This transformation results in the splendid array of fall foliage colors that many temperate regions of the world celebrate.

Concurrently, at the base of the leaf stalk, a special layer of cells called the “abscission layer” begins to form. This layer slowly cuts off the flow of nutrients and water to the leaf, and as a result, the leaf becomes more fragile. Over time, this layer becomes weakened, and external factors like wind, rain, or even the simple passage of time and presence of gravity can cause the leaf to detach from the tree.

This seasonal shedding serves a purpose for the tree. By shedding leaves, the tree conserves water and energy during the colder months when it would be harder to sustain its full canopy. As leaves fall and decompose, they also enrich the soil, providing the tree and other plants with nutrients to tap into during the next growth cycle. In essence, from the height of its photosynthetic productivity to its graceful fall descent, the life of a leaf embodies the cyclical and interconnected nature of life.

The Afterlife of a Fallen Leaf: A Tale of Decomposition

When a leaf drifts from the tree’s canopy and settles on the ground, it embarks on a new phase of life: decomposition. This process is vital, recycling nutrients back into the soil and ensuring the continued health of forest ecosystems. Decomposition isn’t just the fading away of the leaf; it’s an intricate dance of biology, chemistry, and environmental factors.

Upon landing, the leaf is immediately exposed to the elements—moisture, temperature, and oxygen—all of which influence its rate of decay. In moist and warm conditions, decomposition is expedited, whereas cold or dry conditions can slow the process.

The primary agents of decomposition are microorganisms such as fungi and bacteria. These tiny decomposers break down the leaf’s cellular structures, consuming the carbon within and releasing essential minerals like nitrogen, phosphorus, and potassium back into the soil. As they work, these microbes are in turn consumed by tiny creatures like springtails, mites, and nematodes, which are a part of the intricate food web of the forest floor.

Insects, particularly detritivores like millipedes and woodlice, play a significant role as well. They feed on the leaf, breaking it into smaller fragments and making it more accessible to the microbial community. Earthworms, too, have their part to play, dragging leaves into their burrows and mixing the organic material with the soil, further enhancing its fertility.

As weeks and months pass, what was once a vibrant leaf becomes an unrecognizable mixture of humus, minerals, and organic matter. This rich blend nurtures the soil, providing a fertile ground for new plants to thrive and, eventually, support the growth of future tree generations.

In essence, the decomposition of a fallen leaf is not an end but a transformation. It showcases nature’s remarkable ability to renew itself, turning decay into life, in a never-ending cycle of regeneration.

Optimizing Autumn's Bounty: Utilizing Fallen Leaves for Garden Health


Autumn blankets our gardens with a mosaic of fallen leaves, a spectacle of nature’s seasonal shift. However, these leaves, often perceived as mere yard waste, can be harnessed to benefit homeowners’ trees and gardens in profound ways.

Firstly, consider mulching. Instead of raking and bagging leaves to be discarded, homeowners can mow over them with a lawnmower, turning them into a fine mulch. This leaf mulch, when spread over garden beds and around trees, acts as a protective layer. It conserves moisture, suppresses weeds, and moderates soil temperature. As it decomposes, the mulch enriches the soil with organic matter and essential nutrients, fostering a hospitable environment for beneficial microorganisms.

For those keen on composting, fallen leaves are a goldmine. By adding them to compost piles or bins, they provide the necessary carbon-rich ‘brown’ material that complements the nitrogen-rich ‘green’ kitchen scraps. Over time, this combination breaks down to produce compost, a dark, nutrient-dense humus that can be mixed into garden soil to enhance its fertility and structure.

Another sustainable approach is creating a leaf mold. This involves piling wet leaves and letting them decompose over a year or two. The result is a fungus-driven compost, an excellent soil conditioner that improves water retention and provides a habitat for beneficial soil life.

Lastly, for areas aiming to support local wildlife, consider leaving a section of your yard untouched. Fallen leaves can offer shelter for overwintering insects, amphibians, and small mammals, promoting biodiversity.

In summary, autumn’s fallen leaves are not a burden but a boon. By understanding and applying these methods, homeowners can transform these leaves from mere debris into invaluable assets for their gardens and trees, all while embracing sustainable and environmentally-friendly practices.

Environmental Action: Try not to Bag Your Leaves

This fall take an active role in rejuvenating the grounds around you house or property.  Instead of bagging and removing leaves, blow or rake them into piles.  Places to pile leaves might be flower beds, compost piles, the woods in and around trees.

By placing the leaves in piles there will be nicely composted humus piles in the spring for your plants around the house.  Leaves placed in piles around rose bushes will help to protect the bushes from desiccation over the winter months.

If there are school-age children involved, piling leaves is a great way to teach them about decomposition and creating new soil for the plants to grow into.  Of course they will also get to learn about beetles, worms, and lots of other creatures that might make a pile of leaves their homes.

In the Spring, your garden will benefit as will the trees and other flora you chose to share last year’s leaves with.

The post Suburban Environmentalist -What to do with Leaves appeared first on Environmental Action Group.

]]>
22876
A True Environmentalist – The Mantis https://environmentalactiongroup.org/2023/10/16/a-true-environmentalist-the-mantis/ Mon, 16 Oct 2023 18:42:51 +0000 https://environmentalactiongroup.org/?p=22821 The post A True Environmentalist – The Mantis appeared first on Environmental Action Group.

]]>

Introducing the Mantis

Among the vast array of insects that inhabit our world, few command as much attention and intrigue as the praying mantis. Characterized by its iconic folded front limbs that resemble a posture of prayer, the praying mantis stands out not only for its distinctive appearance but also for its exceptional predatory skills. Delving into the world of this remarkable insect unveils a realm of stealth, precision, and brilliance.

To begin with, the term “praying mantis” commonly refers to any of the insects within the order Mantodea, which comprises over 2,400 species spread across numerous families. These insects are predominantly found in tropical regions, but they are also native to temperate zones around the globe. Their size can vary considerably, with some species measuring just a few centimeters, while others reach up to 10 centimeters or more.

One of the most striking features of the praying mantis is its head. Equipped with large, well-developed compound eyes that grant them a wide field of vision, mantises have the unique ability among insects to turn their heads from side to side. This allows them to scan their surroundings with minimal movement, making them efficient ambush predators. Coupled with their keen eyesight, mantises have specialized elongated front limbs designed to rapidly extend and snatch their prey. These limbs, covered in sharp spines, hold the prey securely, rendering escape nearly impossible.

Mantis eyesight

The compound eyes of the Mantis religiosa, or European mantis, are marvels of natural engineering, optimized for the predatory lifestyle of these insects. Here’s a closer look at the features and functions of these compound eyes:

Structure: Like other insects, the mantis has compound eyes, which means each eye is made up of numerous small visual units called ommatidia. Each ommatidium functions like a mini-eye, collecting light and forming a part of the overall image that the mantis sees.

Wide Field of Vision: Due to the prominent placement and large size of their eyes, mantises have a broad field of vision. This wide field allows them to spot potential prey or predators from various angles.

Binocular Vision: One of the most remarkable features of the mantis’s vision is its capacity for binocular vision, which is the ability to perceive depth by gauging the difference in the image seen by each eye. This is especially important for a predator like the mantis, as it allows them to accurately judge the distance to their prey. The forward-facing placement of their eyes gives them a region of overlap in their visual fields, enabling this depth perception.

Motion Detection: While the resolution of compound eyes is generally not as sharp as the single-lens eyes found in vertebrates, they are exceptionally good at detecting motion. This motion sensitivity is crucial for a predatory insect like the mantis, allowing them to react swiftly to moving prey or potential threats.

Polarized Light Sensing: Some studies suggest that certain insects, including mantises, can detect polarized light with their compound eyes. This ability can help them locate water sources or recognize different types of reflections in their environment.

Color Vision: Mantises are believed to have color vision, although it differs from human color perception. They can perceive some wavelengths of light that are vital for their hunting and environmental interactions.

Adaptation to Light Changes: The compound eyes of the mantis can adapt to varying light conditions. They have more light-sensitive cells for low-light conditions, allowing them to be active during dawn and dusk. In bright light, certain cells reduce their sensitivity to prevent overstimulation.

Pseudopupil: When observing a mantis closely, one might notice a dark spot in its eyes that appears to move. This is the pseudopupil, and it’s not an actual pupil but an optical effect. It represents the ommatidia that are oriented directly at the observer, and it appears dark because the light entering those ommatidia is absorbed and doesn’t reflect back.

The compound eyes of the Mantis religiosa, as with other mantis species, are integral to their predatory lifestyle. Their ability to detect motion, judge distances, and perceive their surroundings in various light conditions makes them efficient hunters and fascinating subjects of study in the world of entomology.

Impressive predator

The praying mantis’s predatory nature doesn’t just stop at small insects. Astonishingly, larger mantis species have been observed catching and consuming small vertebrates, including frogs, lizards, and even birds. Their hunting strategy relies on camouflage and patience. Mantis species come in a range of colors and patterns, allowing them to blend seamlessly into their surroundings—be it on leaves, flowers, or tree trunks. Once an unsuspecting prey comes within reach, the mantis snatches the prey with lightning speed.

Reproduction in the mantis world is equally as fascinating, albeit with a dark twist. It’s well-documented that female mantises, in certain conditions, may consume their male counterparts after or even during mating—a phenomenon known as sexual cannibalism. This behavior, while gruesome, is thought to provide the female with necessary nutrients for successful egg production.

Eggs laid by female mantises are encased in a protective foam-like substance called an ootheca. This structure safeguards the developing nymphs inside from potential threats and environmental conditions. When the time is right, dozens, or even hundreds, of tiny mantis nymphs emerge, already resembling miniature versions of their adult counterparts.

Life cycle of the Mantis (Mantis religiosa)

The life cycle of a praying mantis in North America consists of three main stages: egg, nymph, and adult. Here is a detailed overview of the life cycle of mantises in North America:

Egg Stage (Ootheca):

    • Oviposition: In late summer or early fall, after mating, a female mantis lays her eggs. She produces a frothy protein substance that hardens quickly, forming a protective case called an ootheca. This structure can contain anywhere from several dozen to a few hundred eggs, depending on the species.
    • Overwintering: The eggs inside the ootheca go through a diapause, or period of dormancy, during the winter months. The tough ootheca protects the eggs from harsh environmental conditions, including the cold temperatures of North American winters.
    • Hatching: As temperatures warm in the spring, the eggs inside the ootheca complete their development. After a few weeks to a few months, depending on the species and local conditions, tiny mantis nymphs emerge from the ootheca.

Nymph Stage:

    • First Instar: Upon emerging, mantis nymphs are in their first instar stage. They already resemble miniature versions of adult mantises but lack wings.
    • Molting: As nymphs grow, they undergo a series of molts, shedding their old exoskeleton to allow for growth. Each stage between molts is called an instar. Mantises usually go through 5 to 10 instars, depending on the species and environmental conditions.
    • Development: Throughout their nymphal stages, mantises actively hunt and consume prey, gradually increasing in size. With each molt, they look more and more like smaller versions of their adult form.

Adult Stage:

    • Maturation: After the final molt, mantises reach their adult form, now equipped with fully developed wings (though not all species are strong fliers). Adult mantises continue to be voracious predators.
    • Reproduction: In late summer, adult mantises engage in mating. Males often approach females cautiously, as there’s a known risk of cannibalism by the female during or after mating.
    • Lifespan: After mating and laying eggs, the adult mantises have completed their life cycle. They usually live for a few more weeks to a couple of months, but as winter approaches, most adult mantises in North America will die off. The next generation is left behind in the form of oothecae, ready to begin the cycle anew the following spring.

Mantis reproduction

The praying mantis’s predatory nature doesn’t just stop at small insects. Astonishingly, larger mantis species have been observed catching and consuming small vertebrates, including frogs, lizards, and even birds. Their hunting strategy relies on camouflage and patience. Mantis species come in a range of colors and patterns, allowing them to blend seamlessly into their surroundings—be it on leaves, flowers, or tree trunks. Once an unsuspecting prey comes within reach, the mantis snatches the prey with lightning speed.

Reproduction in the mantis world is equally as fascinating, albeit with a dark twist. It’s well-documented that female mantises, in certain conditions, may consume their male counterparts after or even during mating—a phenomenon known as sexual cannibalism. This behavior, while gruesome, is thought to provide the female with necessary nutrients for successful egg production.

Eggs laid by female mantises are encased in a protective foam-like substance called an ootheca. This structure safeguards the developing nymphs inside from potential threats and environmental conditions. When the time is right, dozens, or even hundreds, of tiny mantis nymphs emerge, already resembling miniature versions of their adult counterparts.

Careful where you spray pesticides/insecticides

Perhaps the greatest threat, not considering birds, bats, spiders, frogs, and lizards is people.  More specifically, people with pesticides/insecticides.

Praying mantises, like many other beneficial insects, are affected by insecticides. Insecticides are designed to control or kill insect pests, but they often do not discriminate between pests and beneficial insects. When mantises come into contact with these chemicals, either directly or through their prey, they can be harmed or killed.

There are several ways in which mantises can be affected by insecticides:

Direct Contact: If insecticides are sprayed and mantises are directly hit by the spray, they can absorb the toxic chemicals through their exoskeleton or ingest them while grooming. This can lead to immediate death or chronic effects, such as reduced ability to hunt, reproduce, or avoid predators.

Residual Contact: Even after the insecticide has dried or settled, residues remain on surfaces like plants, soil, or other structures. Mantises that walk or rest on these surfaces can absorb the toxicants, leading to similar negative effects as direct exposure.

Prey Consumption: If a mantis consumes an insect that has ingested or come into contact with insecticides, the toxicants can be transferred through the food chain, a phenomenon known as secondary poisoning. For example, if a mantis eats a bug that has consumed insecticide-treated plants, the chemicals can affect the mantis.

Reproductive Effects: Some insecticides may impact the reproductive capabilities of mantises, either by affecting adults directly or by affecting their eggs or nymphs. For instance, a female mantis exposed to certain insecticides might lay fewer eggs, or the eggs she lays might have reduced viability.

Disruption of Ecosystem Balance: Broad-spectrum insecticides can significantly reduce the number of available prey insects in an area. This can starve mantises or force them to move to new areas in search of food, exposing them to new risks.

Given these potential harms, it’s crucial for gardeners and farmers to consider the broader ecological impacts when using insecticides. Opting for targeted treatments, natural alternatives, or integrated pest management (IPM) practices can help minimize harm to beneficial insects like the praying mantis.

Impressive appetite for other insects

Mantis religiosa, commonly known as the European mantis, is one of the most well-known species of praying mantises. Its dietary consumption, like other mantises, varies based on factors such as size, gender, and reproductive status. However, for a rough estimate:

An adult Mantis religiosa can consume insects roughly equal to its body size daily, especially when active or gravid. In terms of weight, it might eat prey amounting to 20-30% of its body weight in a day, though this can vary.

For a tangible example, an adult female Mantis religiosa, which can reach lengths of about 7-9 cm, might consume 2-3 medium-sized crickets, several moths, or a comparable volume of other insects daily. However, it’s essential to note that consumption can be sporadic; a mantis might eat a significant volume of insects one day and then eat very little or nothing the next, depending on the availability of prey and its energy requirements.

In general, Mantis religiosa is a voracious predator and will consume a variety of insects throughout its life, helping regulate pest populations in environments where it is present.  Since the lifecycle is a full year, gardeners and farmers wanting to use the mantis for pest control should allow a full year for the mantis to lay ootheca’s and increase their population.

For those wanting to increase the mantis population immediately, Oothecas can be purchased in bulks and deposited in the fields as needed for the spring hatching.

Cultural significance

The cultural significance of the praying mantis is also noteworthy. These insects have been revered, symbolized, and even emulated in various societies. In ancient China, the mantis was a symbol of courage and fearlessness. Its poised and efficient hunting techniques inspired martial arts forms that sought to mimic its movements. Elsewhere, it has been seen as a symbol of stillness, meditation, and mindfulness.

The praying mantis, with its arresting appearance and impressive predatory prowess, is a testament to great design and ingenuity. The mantis is a master of ambush, camouflage, and precision, it serves as a compelling reminder of the natural controls and the wonders that the insect world. From its unique physical characteristics to its role in cultural mythologies, the praying mantis stands as a captivating emblem of the intricate dance of life on Earth.

The post A True Environmentalist – The Mantis appeared first on Environmental Action Group.

]]>
22821
Trees and our Atmosphere https://environmentalactiongroup.org/2023/10/04/trees-and-our-atmosphere/ Wed, 04 Oct 2023 20:06:38 +0000 https://environmentalactiongroup.org/?p=22720 The post Trees and our Atmosphere appeared first on Environmental Action Group.

]]>

The humble non assuming essential tree.  Where would we be without them!  Trees come in many different shapes and sizes.  They occupy nearly every biome on the planet, from excessively dry to excessively wet, and all of the thermal variances inbetween.  According the the 2022 study known as “The State of the World’s Trees” report by Botanic Gardens Conservation International (BGCI), they estimated that there are over 60,000 tree species worldwide.

Let’s see… Acer saccharum (Sugar Maple), Quercus alba (White Oak), Betula papyrifera (Paper Birch), Fagus sylvatica (European Beech), Picea abies (Norway Spruce), Pinus sylvestris (Scots Pine), Sequoia sempervirens (Coast Redwood), Eucalyptus globulus (Blue Gum), Magnolia grandiflora (Southern Magnolia), Ulmus americana (American Elm), Cedrus atlantica (Atlas Cedar), Salix babylonica (Weeping Willow), Juglans nigra (Black Walnut), Tilia cordata (Littleleaf Linden), Ginkgo biloba (Ginkgo).  That’s fifteen…

Trees are an essential part of our lives.  From toothpicks to telephone poles, trees provide essential materials for all sorts of things.  Yet, they are hardly recognized as an essential tool in the climate management toolbox.

Our ubiquitous tree, it turns out, is so much more that just a source for materials to build with.  The humble tree is an integrated part of the global climate management ecosystems responsible for managing greenhouse gases and providing the impetus for cloud formation, and much more.

Of course they are wonderful sources of relaxation and endless fun.  We just never think of them as the mighty steadfast warriors protecting us from an ever increasing number of toxins and continual fluctuations of temperature and moisture.

Our trees are working all day every day to process greenhouse gases and release microscopic compounds that work to seed clouds and produce rain.

The well designed CO2 recycling machine.

Trees offer a multitude of environmental benefits.  Some benefits we are still discovering.

In addition to trees providing carbon sequestration, Oxygen production, and pollutant absorption; trees also support biodiversity, erosion control, water quality improvement, and temperature regulation by mitigating   the heat island effect through shading and transpiration.  In essence, trees are just really well designed to “keep in check” global damage caused by people and natural events.

Following the explosion at the Chernobyl Nuclear Power Plant, a large area, known as the Chernobyl Exclusion Zone (CEZ), was evacuated and restricted due to high levels of radiation. This zone covers roughly 2,600 square kilometers (1,000 square miles).  Scientists have discovered much of the agricultural and urban land within the Exclusion Zone has been overtaken by forests. The Red Forest, named for the pine trees that turned reddish-brown and died after absorbing high radiation levels immediately after the disaster, has seen new growth and is now the source of flourishing new tree growth.

Trees are simply remarkable!

Just looking at sequestration of CO2 (carbon Dioxide) a full-grown tree absorbs a surprisingly significant amount of this gaseous compound.

The chart shows a list of 20 different species and their yearly absorption of CO2.  Some trees absorb more than others.  The Redwood and Sequoia list higher because of their enormous size in comparison to the others in the chart.

Fun math: if we take the chart average of 20 kg CO2/yr/ tree and extrapolate that number to a single square mile of mature trees in a forest (approximately 200 trees per acre, 640 acres per square mile, 128,000 trees per square mile).  The amount of CO2 that is absorbed by one square mile of forested trees is 2,560,000 kg per year that is removed from the atmosphere.

Taking one step farther we can see the amazing ability of trees to remove CO2.  The average person regardless of country has a carbon footprint of 5,000 kg CO2 (a little math behind the scenes to get 5,000 kg as the average CO2 footprint of the average world citizen).  Disclaimer: might be a little less, but this is a good number to work an example with.

Using the 5,000 kg/yr carbon footprint and dividing it into the 2,460,000 kg/yr CO2 absorption rate of the forest.  The average 1 square mile of forest will absorb the full carbon footprint of 512 people.

Let’s extrapolate a little  more…

Using the U.S. Govt estimate of 1,254,000 square miles of forested land in the U.S. and multiplying the number of square miles by our carbon footprint group (512 people) we can derive that in the United States our tree cover can fully absorb the carbon footprint of every person in the country (331,000,000)  and have a 50% margin to absorb an additional carbon footprint of over 310,000,000 people!

These remarkable trees

Recently scientists announced they have determined that trees emit a chemical compound that has an effect on cloud formation.  This is in addition to the already known Volatile Organic Compounds (VOCs) of isoprene and monoterpenes.

This lesser known group of sesquiterpenes are a class of terpenes that consist of three isoprene units, which means they have 15 carbon atoms. They are part of a larger family of compounds known as terpenoids, which are naturally occurring organic chemicals based on combinations of the isoprene unit.

The sesquiterpenes have some interesting characteristics:

Structure: The basic molecular formula for sesquiterpenes is C_{15}H_{24}.

Sources: Sesquiterpenes are found in a variety of plants and some animals. They are especially prevalent in essential oils, such as those from cedarwood, ginger, myrrh, and ylang-ylang.

Diversity: Sesquiterpenes have a wide range of structures and functions. This diversity is due to the various ways the three isoprene units can be combined and modified.

Biological Activities: Many sesquiterpenes have significant biological activities. For example, they can act as anti-inflammatory, antimicrobial, or antifungal agents. Some sesquiterpenes also have a role in plant defense mechanisms against herbivores.

Aroma: Many sesquiterpenes contribute to the distinctive fragrances of plants and essential oils. They can smell spicy, earthy, woodsy, and sometimes citrus like.

Biosynthesis: In plants, sesquiterpenes are synthesized from the precursor farnesyl pyrophosphate (FPP), a compound formed from the joining of three isoprene units.

Industrial Use: Due to their varied properties, sesquiterpenes have applications in the perfume industry, food flavoring, and pharmaceuticals, among others.

Sesquiterpenes are a fascinating and diverse group of compounds with a wide range of applications and biological activities.

A research team headed by Lubna Dada who is a scientist performing research into how aerosols formed naturally can react with sunlight and Ozone to create secondary aerosols which can potentially  have an affect on the climate.

Due to their size, numbers, and reactivity, sesquiterpenes are more effective than previously thought at seeding clouds.  This ties trees into the process of seeding clouds as opposed to just seeding from airborne release of particulates.

While the research is not earth shattering, the implications are that scientists may have been undercounting the number of aerosols around the globe.  Trees may have been producing enormous quantities of aerosols and having a much greater affect on cloud formation than previously thought.

This new information has implications for radiative forcing.  The equations and assumptions will likely change and with it the assumptions and calculations for the cooling effect clouds have on the atmosphere and the ground.

Action you can take

Perhaps the most encouraging information in this piece is that the ability of trees to absorb CO2 is quite significant.  The fear mongers that are touting the extremely high concentrations of CO2 are causing climate change should tone it down a bit.

Using U.S. Gov’t data and a little simple math we can demonstrate that just looking at the ability of trees to absorb CO2 and the number of trees in the U.S. alone we have twice the capacity to absorb all the CO2 the U.S. generates.  If we were to add field crops, ground covers et al.  It’s easily demonstrable that CO2 is not a problem and it has little to no impact with climate change.

Do you want to add to the ability of the U.S. to absorb CO2?  plant a tree!, or a shrub, or a garden, or … well… just plant something!

The post Trees and our Atmosphere appeared first on Environmental Action Group.

]]>
22720
Forest Fires -Hidden value among the ashes https://environmentalactiongroup.org/2023/06/06/forest-fires-hidden-value-among-the-ashes/ Tue, 06 Jun 2023 19:29:55 +0000 https://environmentalactiongroup.org/?p=22392 The post Forest Fires -Hidden value among the ashes appeared first on Environmental Action Group.

]]>

The scourge of the forest fire

Forest fires occur globally in all regions of the planet.  Their frequency, intensity and extent vary significantly from region to region.  Some fires are quickly addressed in an effort to control their devastation wile others  are left to burn in an uncontrolled manner.

The impact from forest fires is felt across the globe.  It seems that where forests thrive there too forest fires present themselves.  The only regions of the planet where forest fires seem to not occur, or occur with much less frequency, is where there are no trees like Antarctica and the deserts of north Africa (that’s a no-brainer) or where the surface vegetation is sparse and the climate is very cold and wet.

Forest fires can be influenced by a combination of factors, including climate conditions (temperature, humidity, wind), fuel availability (dry vegetation), lightning strikes, human activities (negligence, arson, land-use changes), and forest management practices.

Types of vegetation also have an impact on forest fires. Pine trees and junipers contain flammable resins or oils in their foliage, bark, and branches. These resins are highly combustible and can ignite and sustain a fire, even when the tree or its surroundings are wet. The resins act as an accelerant, allowing the fire to propagate despite the presence of moisture.

While the surface of pine needles or juniper foliage may appear wet after rainfall or dew, the moisture does not always penetrate deep into the vegetation. The needles or leaves of these trees have a large surface area that can shed water quickly, preventing adequate moisture absorption. As a result, the inner layers of the foliage or twigs may remain dry, providing fuel for a fire.

Pine trees and junipers often have a buildup of dead and dry material, such as fallen needles, branches, and cones, on the forest floor or within the tree canopy. This dry material can ignite and burn easily, even with minimal heat, and contribute to the spread of fire.

Excessive buildup of this combustible material contributes to the severity of the fire. Forests with excessive underbrush and years of tree debris seem to have more severe fires that take down large trees.  Conversely, forests with minimal underbrush and tree debris tend to have fires of less magnitude and generally do not bother larger healthy trees.

Regeneration of the forest

Some pine species, particularly those in fire-prone ecosystems, have fire-adaptive characteristics. For instance, serotinous pines have cones that remain closed until exposed to the heat of a fire, at which point they open, releasing seeds onto the newly cleared soil. These adaptations increase the trees’ chances of surviving a fire.

Other trees develop thick bark that doesn’t burn easily and insulates the delicate phloam and xylem in the tree’s cambium growth layer.  The Ponderosa and Western Yellow Pine are good examples of this.  These trees also drop lower branches as the tree matures.  This helps avoid any fire from climbing up the tree.

The shortstraw pine also called the Southern Yellow Pine has an extensive root system and many dormant buds protected underground.  After a fire moves through the extensive root system releases its nutrients and the buds burst forth to regenerate the tree.

Other trees develop thick bark that doesn’t burn easily and insulates the delicate phloam and xylem in the tree’s cambium growth layer.  The Ponderosa and Western Yellow Pine are good examples of this.  These trees also drop lower branches as the tree matures.  This helps avoid any fire from climbing up the tree.

The shortstraw pine also called the Southern Yellow Pine has an extensive root system and many dormant buds protected underground.  After a fire moves through the extensive root system releases its nutrients and the buds burst forth to regenerate the tree.

Many plants in fire zones need fire either directly or indirectly to help germinate seeds.  The seed typically has a hard outer shell that allows them to remain dormant sometimes for several years, waiting for a fire.  It may be the intense heat of the fire, smoke, or the new surface nutrients in the ash that causes these seeds to germinate.

Examples of these plants are the Buckthorn family, Coffeeberry, Redberry, and Ceanothus.  These plants grow in the chaparral area of the American West.

The Forest Fire as a Surgeon

When a fire burns through a forest there is a natural removal of trees that are not able to survive the heat of the fire.  Underbrush is also cleared by burning.  Often the trees that fall victim to a fire are trees that are diseased, dead, or very young.  The removal of these trees is a mechanism of the fire and their removal achieves many purposes.

Just as in your home garden, forests have a myriad of pests and diseases continually attacking its’ richly diverse fauna.  For many reasons the delicate balance of mechanisms keeping disease and pests in manageable numbers can sometimes fail and the result can become a blight on the forest threatening specific species of fauna, or threatening an entire stand of trees.  When a fire burns through the forest the pests and diseases attacking the fauna are removed or brought back into manageable populations.

Perhaps the most obvious change in the forest after afire is the removal of combustible material.  Removal of this material reduces the amount of fuel that subsequent fires will have available to consume.  Without large quantities of combustible material, subsequent fires burn with less vigor and have limited ability to consume large trees.

Removal of combustible material reduces the congestion of the forest and opens up the canopy above letting sunlight filter down to the ground.  This provides sufficient light for new seedlings and budding trees to grow.  Removing underbrush aids in increasing airflow through the forest.  This assists with reducing fungal growth on young plants.  With increased airflow comes airborne seeds to re-establish a ground cover which, in turn, contributes to the overall health of the re-generating forest.

Ash - The unsung hero

Many consider ash as an annoying byproduct of wood fires.  It’s dusty, it clings to everything, it’s a powdery annoying material that can quickly soil just about everything.

Ash is terribly misunderstood.  Ash is the byproduct of fauna combustion and it is the indispensable component necessary in forest re-generation.

Without ash a forest would take significantly longer to re-generate, if at all.  Ash plays several important roles in ecosystems following a forest fire.

Here are some of the key roles of ash:

  1. Nutrient Cycling: Ash contains various essential nutrients such as nitrogen, phosphorus, potassium, and trace elements. When deposited on the forest floor, the ash can contribute to the replenishment of soil nutrients. After a fire, the release of these nutrients from the ash promotes the growth of new vegetation and facilitates the recovery of the ecosystem.
  2. Soil Fertility: Ash can increase the fertility of soils by raising the pH levels and improving nutrient availability. The alkaline nature of ash can neutralize acidic soils, creating a more suitable environment for plant growth. This can enhance the regeneration of plant communities in post-fire landscapes.
  3. Seed Germination: Ash acts as a protective layer that can enhance seed germination. Some plant species have seeds that require specific conditions for germination, such as exposure to heat or the presence of specific chemicals found in ash. The presence of ash can provide a suitable microenvironment for these seeds to sprout and establish new plant populations.
  4. Erosion Control: After a fire, the loss of vegetation and the exposure of bare soil can increase the risk of erosion. Ash, when mixed with soil, can form a protective layer that helps prevent soil erosion caused by wind and water. It can stabilize the soil surface, reduce runoff, and protect against the loss of valuable topsoil.
  5. Water Retention: Ash can help retain moisture in the soil by reducing evaporation and improving water infiltration. The fine particles in ash can create a porous layer that traps moisture and increases water-holding capacity. This can benefit newly germinated plants and promote their survival during the early stages of post-fire recovery.
  6. Microbial Activity: Ash provides a substrate for microbial colonization and activity. Microorganisms play a crucial role in nutrient cycling and decomposition processes. Ash can serve as a habitat for bacteria, fungi, and other microorganisms, contributing to the breakdown of organic matter and the recycling of nutrients.

Environmental Action Plan

Forest fires seem to have great benefit in maintaining a healthy forest – yet, fires have a downside too. When forests are not allowed to periodically experience a clearing burn the forest becomes increasingly unhealthy and combustible material abounds.

A sudden fire in these types of forests is going to be highly volatile and have great destructive capability.  The airborne particulates and volatile gases will certainly have a detrimental affect on those with health considerations.  Due to the intensity of the burn, the fire will easily jump breaks and roads.  Personal property and animals will be at heightened risk of damage and death.

Preventing forest fires is not necessarily a good idea.  Tolerating periodic burns will keep personal property protected and will help the forest remain healthy.

If you are in a position to advocate for controlled burns, then encourage these burns to take place under the supervision of a burn specialist from a local Dept. of Natural Resources.

Building considerations when living in a forest

If you have a house or buildings in a forested area, then make necessary changes to landscape and building materials.  Thermal energy transfer has three forms: Conduction, Convection, and Radiation.

Conduction is when molecules transfer kinetic energy to each other through collisions.  Convection occurs when hot air rises and allows cooler air to come in and be heater.  This is the wind associated with forest fires.  Radiation is when accelerated charged particles release electromagnetic radiation which can be felt as heat.  All three forms are present in a forest fire and will each have an affect on personal property.

When a forest fire approaches, with fire in the canopy of the trees (a sign of a destructive file), the property owner should expect fire heated wind to carry burning material unto the property roof.  Along with the wind will come excessive radiant heat able to raise the roof temperature of the property.  If the roof is made from combustible material, the roof material will begin to release combustible volatile gases.  Burning debris will float down from the engulfed tree canopy and land on the roof igniting the roof material.

To prevent this scenario from playing out, consider changing the roof material to a metal roof.  It is unlikely a metal roof will ignite.

The siding of property is also at risk for igniting if it is made from a combustible material.  Consider siding of rock, brick, plaster, or stucco.  These materials are poor thermal conductors and are not flammable.  Excessive heat will have marginal affect, and not result in volatile gases being released from the structure.

Windows will conduct  heat from electromagnetic radiation .  Prepare window shutters constructed from a non combustible material.  Functional shutters look nice and provide great protection for window frames and great protection against radiant heat igniting window treatments within the house.

Landscaping plays a role too.  If the property is ever surrounded in a forest fire, the landscape plantings will not survive if the fire is intense.  Plan not to have any pine shrubbery near the house.  The resins in any of the pinus species are highly flammable producing an intense fire once ignited.

 

Having animals in a fire zone

Having animals in a fire region takes a bit more planning to ensure they are cared for during  a fir event.

Many factors go into planning for animal welfare in fire zones.  The best solution for horses, and other ruminants is to provide a pasture with a pond that has a fence line.  The fence line should be a distance from the forest to keep from igniting by radiant heat.  This is the area animals will be turned out into if a fire is approaching.  While they will be on heightened alert, animals will survive in a defined space.

During fire season the pasture will need to be mowed to keep the grass shorter.  Shorter grass doesn’t die off as readily as grass left alone.  Grass that’s left alone will grow tall, dry out, and be easy fuel for a grass fire.  If you are maintaining a pasture for fire safety the last thing you want is to have a grass fire where you have just put your animals.

It goes without saying that if animals are already housed in a metal barn it may not be necessary to keep them in a different pasture area

Planning is crucial for animals to survive

After a fire in a rural setting it is not unusual to be without power, roads, and cell service.  Develop a plan to care for animals for at least a month following the fire.  This means putting away grain and hay sufficient to feed all the animals.  Depending on what species are kept, there might be an assortment of different foods necessary to stockpile.  For ruminants the grass that may have been burned off during the fire should grow back in a month enough for feeding to resume.

After a fire in a rural setting it is not unusual to be without power, roads, and cell service.  Develop a plan to care for animals for at least a month following the fire.  This means putting away grain and hay sufficient to feed all the animals.  Depending on what species are kept, there might be an assortment of different foods necessary to stockpile.  For ruminants the grass that may have been burned off during the fire should grow back in a month enough for feeding to resume.

Consider building a feed barn that is fire proof.  This can be done using cinder block, brick, concrete, steele, etc.  Use a metal roof with steel trusses for support.  This is where the backup generator, and ifuel tank will be housed.  Depending on water sources, the well head might be located close nearby.

Don’t expect streams to be capable of providing clean water for some time after a fire.  When forests are reduced to ash, the heavy metals and other persistent environmental toxins leach from the ash into water run-off and raise toxin levels in natural streams.

Forest fires will always be a mixed blessing.  Planning for how to address a fire before a fire exists will make all the difference in so many ways.

The post Forest Fires -Hidden value among the ashes appeared first on Environmental Action Group.

]]>
22392